奇迹小说

第2章 黑洞照片的诞生

书名:人类的勇气本章字数:2238

2019年4月10,人类历史上首张黑洞照片终于问世。事件视界望远镜(EHT)公布了人类历史上第一张黑洞照片-M87星系中心的黑洞照片。在爱因斯坦于1905年提出发表狭义相对论、1915年发表广义相对论的一百年后,人类终于看到了黑洞的真实影像。

在这之前,即使我们能用引力波“听”到黑洞,也没有机会用电磁波“看”到黑洞。这是因为黑洞太远、太小了。即使梅西耶87(即M87)中心的黑洞是拥有数十亿倍太阳质量的星际巨兽,它的事件视界在天空上的投影只有几个微角秒,就算加上外围的吸积盘也不过几十个微角秒。要知道,1度的张角对应着3.6亿个微角秒,没有任何单体望远镜能分辨这么精细的角度。

为了能一睹黑洞真容,在2017年4月5日到14日之间,来自全球30多个研究所的科学家们启动了一项雄心勃勃的庞大观测计划。他们将分布于全球不同地区的8个射电望远镜阵列组成一个虚拟望远镜网络,希望利用其捕获黑洞影像。

广义相对论预言,虽然黑洞本身不发光,但因为黑洞的存在,周围时空弯曲,气体被吸引下落。气体下落至黑洞的过程中,引力能转化为光和热,因此气体被加热至数十亿度。黑洞就像沉浸在一片类似发光气体的明亮区域内,事件视界看起来就像阴影,阴影周围环绕着一个由吸积或喷流辐射造成的如新月状的光环。对黑洞阴影的成像将能提供黑洞存在的直接‘视觉’证据。”但这就必须要保证望远镜足够灵敏,能分辨的细节足够小,从而能保证看得到和看得清。

要满足上述所有条件,那么望远镜的口径需要像地球大小。然而,目前地球上已有的单个望远镜最大口径也只有500米。

聪明的天文学家们想到了一个办法,他们把地球上现有的一些望远镜“组合”起来,就能够形成一个口径如地球大小的“虚拟”望远镜,其所达到的灵敏度和分辨本领都是前所未有的。

于是,全球超过200名科学家达成了“事件视界望远镜”(EHT)这一重大国际合作计划,决定利用甚长基线干涉测量技术。就是利用多个位于不同地方的望远镜在同一时间进行联合观测,最后将数据进行相关性分析之后合并,这一技术在射电波段已相当成熟。

最终,科学家们选定了来自全球多地的包括南极望远镜等8个亚毫米射电望远镜。它们多数都是单一望远镜,比如夏威夷的JCMT和南极望远镜。也有望远镜阵列,比如ALMA望远镜是由70多个小望远镜构成。

在组建大型虚拟望远镜的同时,科学家们也在寻找着合适的拍摄目标。黑洞剪影和周围环绕的新月般光环是非常非常小的。在拍照设备能力有限的情况下,要想拍摄到黑洞照片,必须找到一个看起来角直径足够大的黑洞作为目标。科学家们甄选了一圈之后,决定将近邻的两个黑洞作为主要目标:一个是位于人马座方向的银河系中心黑洞Sgr A*,另一个则是位于射电星系M87的中心黑洞M87*。由于黑洞事件视界的大小与其质量成正比,这也意味着质量越大,其事件视界越大。这两个黑洞质量都超级大,它们的事件视界在地球上看起来也是最大的,是最优的成像候选体。

Sgr A*黑洞的质量大约相当于400万个太阳,所对应的视界面尺寸约为2400万公里。然而,地球与Sgr A*相距2万5千光年之遥。这就意味着,它巨大的视界面在我们看来,比针尖还要小。

M87中心黑洞的质量更为巨大,达到了60亿个太阳质量。尽管M87中心黑洞与地球的距离要比Sgr A*与地球之间的距离更远,M87星系黑洞距离太阳系约5500万光年,其体积为太阳的680万倍。由于质量庞大,所以它的事件视界对科学家们而言,可能跟Sgr A*大小差不多,甚至还要稍微大那么一点儿。

要想看清楚黑洞事件视界的细节,事件视界望远镜的空间分辨率要达到足够高才行,需要比哈勃望远镜的分辨率高出1000倍以上。

对黑洞成像而言,能够在合适的波段进行观测至关重要。观测黑洞事件视界“阴影”的最佳波段是约为1毫米,因为气体在这个波段的辐射最明亮,而且射电波也可以不被阻挡地从银河系中心传播到地球。在这种情况下,望远镜的分辨率取决于望远镜之间的距离,而非单个望远镜口径的大小。为了增加空间分辨率,以看清更为细小的区域,科学家们在此次进行观测的望远镜阵列里增加了位于智利和南极的望远镜。这样设置是为了要保证所有8个望远镜都能看到这两个黑洞,从而达到最高的灵敏度和最大的空间分辨率。

8个望远镜北至西班牙,南至南极,它们将向选定的目标撒出一条大网,捞回海量数据。留给科学家们的观测窗口期非常短暂,每年只有大约10天时间。对于2017年来说,是在4月5日到4月14日之间。

除了观测时间上的限制,拍摄对天气条件要求也极为苛刻。因为大气中的水对这一观测波段的影响极大,水会影响射电波的强度,这意味着降水会干扰观测。要想视界面望远镜顺利观测,需要所有望远镜所在地的天气情况都非常好。按照要求,计划选择的8个望远镜所在之处均是位于海拔较高,降雨量极少,全部晴天的概率非常高。

此外,要成像成功还必须要求所有望远镜在时间上完全同步。

北京时间2017年4月4日,事件视界望远镜启动拍摄,将视线投向了宇宙。最后的观测结束于美国东部时间4月11日。观测期间,每一个射电望远镜都收集并记录来自于目标黑洞附近的射电波信号,这些数据然后被集成用于获得事件视界的图像。为了确保信号的稳定性,事件视面望远镜利用原子钟来确保望远镜收集并记录信号在时间上同步。

黑洞拍张照片不容易,“洗照片”更是耗时漫长。在观测结束之后,各个站点收集的数据将被汇集到两个数据中心(分别位于美国麻省Haystack天文台和德国波恩的马普射电所)。在那里,超级计算机通过回放硬盘记录的数据,在补偿无线电波抵达不同望远镜的时间差后将所有数据集成并进行校准分析,从而产生一个关于黑洞高分辨率影像。

此后,经过长达两年的“冲洗”,2019年4月10,人类历史上首张黑洞照片终于问世。