奇迹小说

第14章 詹姆斯·韦伯空间望远镜和引力透镜效应

书名:人类的勇气本章字数:2922

詹姆斯·韦伯空间望远镜(James Webb Space Telescope,简称为JWST)是哈勃太空望远镜的“接班人”,其主镜口径为6m,接收仪器包括红外相机、近红外光谱仪、组合式中红外相机和光谱仪,工作波段为红外波段,运行轨道是距地球150万km的第二拉格朗日点。詹姆斯·韦伯空间望远镜的主镜面集光能力大约是哈勃空间望远镜的7倍

詹姆斯·韦伯太空望远镜的质量为6.2吨,约为哈勃空间望远镜(11吨)的一半。主反射镜由铍制成,口径达到6.5米,面积为哈勃太空望远镜的5倍以上。它还能在近红外波段工作、能在接近绝对零度(相当于零下273.15摄氏度)的环境中运行。

2021年12月25日,詹姆斯·韦伯太空望远镜成功发射升空。

韦伯太空望远镜长24米,宽12米,高12米。由三个主要部件组成:综合科学工具指令舱(ISIM)、光学望远镜(OTE)以及太空舱组件。

韦伯太空望远镜的六边型主光学望远镜的镜片直径约为6.5米,而哈勃太空望远镜的镜片只有2.4米,如此巨大的镜片使得它能够探测到亮度很低的天体。不过,没有哪个运载火箭宽到可以容纳如此大的镜片,因此该镜片由18节可折叠的分镜片组成,这也成为它最具风险性的设计,在发射升空后,镜片才会全部打开。

此外,遮光罩如网球场那么大,矩形,共5层,升空后也将被展开,用来为镜片和其他航天器元部件遮挡来自太阳的热量。

詹姆斯·韦伯望远镜能够探测到更远的太空,但质量只有哈勃望远镜的1/3。它采用反射式结构,省略了镜筒,主镜片直径约为6m,由18块六角形的镜片组成,探测遥远暗淡天体的能力是哈勃望远镜的400倍。

科学家为什么要将它放在第二拉格朗日点上呢?

这是因为这里既远离大气尘埃的影响,也没有空间碎片撞击的风险。望远镜始终处于地球背离太阳的阴影中,可使日、地辐射对光学系统的影响最小。

詹姆斯·韦伯望远镜将主要利用红外波段进行观测,对宇宙的纵深进行研究,目的是了解星系、恒星以及包括地球在内的行星从宇宙“大爆炸”至今经历了怎样的演化过程。科学家希望用它“捕捉”到宇宙第一缕光线,即大约110亿年前最初的恒星和星系形成时发出的光芒。

2022年7月11日,美国总统拜登通过社交媒体公布了韦伯太空望远镜拍摄的首张全彩色图像。这张被称为“韦伯的首次深空”的照片中显示的是星系团SMACS 0723包含了数千个星系,距离地球46亿光年。

NASA称,这片广阔宇宙覆盖的天空,大约有地面上的人举起的一粒沙那么大。

这张照片是用12.5个小时以近红外相机拍摄的不同波长的图像合成的,其在红外波长上达到的深度超过了哈勃太空望远镜需要花费数周时间才能到达最深处的视野。

照片中的星系团SMACS 0723,包含了数千个星系,距离地球46亿光年。照片中,星系团就像放大镜,其背后物体清晰可见。这被称为引力透镜效应,它创造了韦伯太空望远镜第一张令人难以置信的深场视图。

图像上有一部分是来自“宇宙大爆炸”不久后的光,也就是130多亿年前。美国航天局表示,“SMACS 0723”星系团的总质量使其可以产生“引力透镜”效应,放大了它背后更遥远的星系。它现在探测到的有些光是从特别远的星系传过来的,比如130亿年前就发出来的光到现在才被望远镜捕捉到,而当时的宇宙还处于婴儿期,因此人类有望通过望远镜看到宇宙婴儿时期的样子。

而在现在,韦伯太空望远镜又拍到了一张非凡的太空照片,为什么说它非凡呢?根据这张太空照片显示的内容,漆黑的宇宙空间中有一个几乎接近完美的圆环,它究竟是什么东西?其实,它就是一个遥远的普通星系。

这个星系名为SPT-S J041839-4751.8,大约在120亿光年外,只不过该星系发出的光线在传播地球的过程中刚好被一个大质量天体给遮挡住了,但光线在经过大质量天体附近时发生了弯曲,是因为大质量天体的巨大引力所致,这就是著名的“引力透镜效应”,引力透镜效应是爱因斯坦的广义相对论所预言的一种现象,现在,天文学证实它的真实存在,这种圆环被称为爱因斯坦环。

引力透镜效应

早在1911年,爱因斯坦就提出,由于大质量天体对周边时空造成弯曲,远方恒星的光线,掠过太阳表面时会发生微小的偏转。1916年,爱因斯坦发表了广义相对论,进一步系统阐述了时空弯曲理论。

爱因斯坦的理论惊世骇俗,在科学界引起了强烈反响。为了验证爱因斯坦时空弯曲理论,英国天文学家爱丁顿率领一支远征队,不远千里特意赶到非洲普林西比岛最佳日全食观测点。1919年5月25日,在日全食状态下,观测到了远方星光经过太阳附近,发生了1.75"的偏转。

由此验证了爱因斯坦广义相对论预言:物质决定时空的形状,质量扭曲时空表现出来的引力现象,使光线发生弯曲。在宇宙中,前置大质量天体能够增亮视线背景星系或扭曲其图像,原理类似光学透镜的作用,因而称为引力透镜效应。

引力透镜效应一般由三个条件构成,即观测者、前置天体、被观测背景天体。观测者当然是我们地球人类,通过太空望远镜等设施对宇宙天体进行观测;前置天体,就是隔在被观测背景天体与观测者中间的透引力源天体;被观测背景天体就是光线经过引力透镜被人类观测到的远方天体。

通过观测这些穿越引力透镜的光源,就能知道这个透镜的存在,由此证实了时空弯曲的存在。

最早发现引力透镜效应的,是一组英美团队的天文学家:丹尼斯·沃尔什(Dennis Walsh),罗伯特·卡斯威尔(Robert Carswell)和雷·威曼(Ray Weyman)。他们利用美国亚利桑那州基特峰国立天文台2.1米光学望远镜,观测到了两个相邻很近的类星体QSO0957+561A和QSO0957+561B,视角相距只有6"。

奇怪的是这两个类星体光谱非常相似,发射线红移都是1.405,吸收线红移都是1.39,射电流量密度也非常接近,且视距离如此接近。最终,科学家们认为这两个类星体实际是一个实体发生的两个虚像,这就是爱因斯坦预言的引力透镜效应形成的像。

经过进一步观测计算,QSO0957+561类星体距离我们87亿光年,而夹在其中间充当透镜的天体YGKOW G1(简称G1)则距离我们37亿光年,这个G1是一个巨大星系,形成了巨大的引力透镜,当QSO0957+561类星体的光穿越透镜时,得到放大并形成两个相互镜像。

1980年,韦曼等人又发现了一个看起来像三重像的类星体PG 1115+080,但其中有一个像特别亮,远远高于其他两个像的亮度,后来发现这是两个相差0.5"的像同叠的结果,因此这个被引力透镜折射的类星体像实际上是四重像。

这种四重像引力透镜效应,人们把它称为爱因斯坦十字架。

理论上,任何天体都会扭曲周边时空,就会形成一个引力透镜,因此可以说引力透镜遍布宇宙各个角落。但只有当这个“透镜”足够大,后面又恰好有被放大或被多重镜像的天体时,这个“透镜”才有意义,而且只有对遥远的天体形成引力透镜效应才更有意义。

随着引力透镜发现得越来越多,人们不但发现了遥远天体的多重镜像,还发现了爱因斯坦环。所谓爱因斯坦环,就是由于引力透镜效应影响,让经过透镜光源畸变成环状,围绕着引力透镜的边缘,有的是一个不完整的圆形,有的是完整的圆形。

1988年,美国天文学家休伊特等人,发现了第一个不算完整的爱因斯坦环,被命名为MG1131 + 0456;1998年,英国天文学家采用哈勃太空望远镜发现了第一个完整的爱因斯坦环,命名为B1938 + 666。

现在,引力透镜现象在宇宙中普遍存在,根据引力源的大小,人们把引力透镜划分为微引力透镜、弱引力透镜、强引力透镜等三个档次。

太阳这样的天体形成的引力透镜就是典型的微引力透镜,只能让较远天体光线经过时发生小幅偏转;而弱引力透镜的放大增强效应比微引力透镜要强大,让通过的光源变得更亮;强引力透镜则能让通过的光源明显放大和改变星像,形成双像、多重像以及环半弧和全弧。

通过这些引力透镜,人们能够看到更远更亮更多的天体。