圆的相关知识点
2024-02-19 04:28
2024-02-19 06:44
关于圆的知识点如下:
一、圆及圆的相关量的定义
1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。
3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另盯好一个交点的角叫做圆周角。
4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。
二、有关圆的基本性质与定理
圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径的直径垂直于弦,并且平分弦所对的弧。
在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
一条弧所对的圆周角等于它所对的圆心角的一半。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
不在同一直线上的3个点确定一个圆。
一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。
三、圆的定理
1.垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧。
推论1:①平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧;
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆橡脊的两梁则渗条平行弦所夹的弧相等。
2.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
3.推论2半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径。
4.定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
5.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。